Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36094975

RESUMO

Algorithmic changes that increase beamforming speed have become increasingly relevant to processing synthetic aperture (SA) ultrasound data. In particular, beamforming SA data in a spatio-temporal frequency domain using the F-k (Stolt) migration have been shown to reduce the beamforming time by up to two orders of magnitude compared with the conventional delay-and-sum (DAS) beamforming, and it has been used in applications where large amounts of raw data make real-time frame rates difficult to attain, such as multistatic SA imaging and plane-wave Doppler imaging with large ensemble lengths. However, beamforming signals in a spatio-temporal Fourier space can require loading large blocks of data at once, making it memory-intensive and less suited for parallel (i.e., multithreaded) processing. As an alternative, we propose beamforming in a range-Doppler (RD) frequency domain using the range-Doppler algorithm (RDA) that has originally been developed for SA radar (SAR) imaging. Through simulation and phantom experiments, we show that RDA achieves similar lateral resolution and contrast compared with DAS and F-k migration. At the same time, higher axial sidelobes in RDA images can be reduced via (temporal) frequency binning. Like the F-k migration, RDA significantly reduces the overall number of computations relative to DAS, and it achieves ten times lower processing time on a single CPU. Because RDA uses only a spatial Fourier transform (FT), it requires two times less memory than the F-k migration to process the simulated multistatic data and can be executed on as many as a thousand parallel threads (compared with eight parallel threads for the F-k migration), making it more suitable for implementation on modern graphics processing units (GPUs). While RDA is not as parallelizable as DAS, it is expected to hold a significant speed advantage on devices with moderate parallel processing capabilities (up to several thousand cores), such as point-of-care and low-cost ultrasound devices.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ultrassonografia/métodos
2.
IEEE Trans Med Imaging ; 40(4): 1184-1195, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400649

RESUMO

Diffuse reverberation is ultrasound image noise caused by multiple reflections of the transmitted pulse before returning to the transducer, which degrades image quality and impedes the estimation of displacement or flow in techniques such as elastography and Doppler imaging. Diffuse reverberation appears as spatially incoherent noise in the channel signals, where it also degrades the performance of adaptive beamforming methods, sound speed estimation, and methods that require measurements from channel signals. In this paper, we propose a custom 3D fully convolutional neural network (3DCNN) to reduce diffuse reverberation noise in the channel signals. The 3DCNN was trained with channel signals from simulations of random targets that include models of reverberation and thermal noise. It was then evaluated both on phantom and in-vivo experimental data. The 3DCNN showed improvements in image quality metrics such as generalized contrast to noise ratio (GCNR), lag one coherence (LOC) contrast-to-noise ratio (CNR) and contrast for anechoic regions in both phantom and in-vivo experiments. Visually, the contrast of anechoic regions was greatly improved. The CNR was improved in some cases, however the 3DCNN appears to strongly remove uncorrelated and low amplitude signal. In images of in-vivo carotid artery and thyroid, the 3DCNN was compared to short-lag spatial coherence (SLSC) imaging and spatial prediction filtering (FXPF) and demonstrated improved contrast, GCNR, and LOC, while FXPF only improved contrast and SLSC only improved CNR.


Assuntos
Redes Neurais de Computação , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32746214

RESUMO

Using ultrasound to image small vessels in the neonatal brain can be difficult in the presence of strong clutter from the surrounding tissue and with a neonate motion during the scan. We propose a coherence-based beamforming method, namely the short-lag angular coherence (SLAC) beamforming that suppresses incoherent noise and motion artifacts in Ultrafast data, and we demonstrate its applicability to improve detection of blood flow in the neonatal brain. Instead of estimating spatial coherence across the receive elements, SLAC utilizes the principle of acoustic reciprocity to estimate angular coherence from the beamsummed signals from different plane-wave transmits, which makes it computationally efficient and amenable to advanced beamforming techniques, such as f-k migration. The SLAC images of a simulated speckle phantom show similar edge resolution and texture size as the matching B-mode images, and reduced random noise in the background. We apply SLAC power Doppler (PD) to free-hand imaging of neonatal brain vasculature with long Doppler ensembles and show that: 1) it improves visualization of small vessels in the cortex compared to conventional PD and 2) it can be used for tracking of blood flow in the brain over time, meaning it could potentially improve the quality of free-hand functional ultrasound.


Assuntos
Processamento de Imagem Assistida por Computador , Ultrassonografia Doppler , Encéfalo/diagnóstico por imagem , Humanos , Recém-Nascido , Imagens de Fantasmas , Ultrassonografia
4.
Artigo em Inglês | MEDLINE | ID: mdl-33141665

RESUMO

Passive cavitation mapping (PCM) algorithms for diagnostic ultrasound arrays based on time exposure acoustics (TEA) exhibit poor axial resolution, which is in part due to the diffraction-limited point spread function of the imaging system and poor rejection by the delay-and-sum beamformer. In this article, we adapt a method for speed of sound estimation to be utilized as a cavitation source localization (CSL) approach. This method utilizes a hyperbolic fit to the arrival times of the cavitation signals in the aperture domain, and the coefficients of the fit are related to the position of the cavitation source. Wavefronts exhibiting poor fit to the hyperbolic function are corrected to yield improved source localization. We demonstrate through simulations that this method is capable of accurate estimation of the origin of coherent spherical waves radiating from cavitation/point sources. The average localization error from simulated microbubble sources was 0.12 ± 0.12mm ( 0.15 ± 0.14λ0 for a 1.78-MHz transmit frequency). In simulations of two simultaneous cavitation sources, the proposed technique had an average localization error of 0.2mm ( 0.23λ0 ), whereas conventional TEA had an average localization error of 0.81mm ( 0.97λ0 ). The reconstructed PCM-CSL image showed a significant improvement in resolution compared with the PCM-TEA approach.


Assuntos
Acústica , Microbolhas , Algoritmos , Som , Ultrassonografia
5.
Ultrason Imaging ; 41(1): 3-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222052

RESUMO

Phase aberration is a phenomenon caused by heterogeneity of the speed of sound in tissue, in which the actual speed of sound of the tissue is different than the assumed speed of sound used for beamforming. It reduces the quality and resolution of ultrasonic images and impairs clinical diagnostic capabilities. Although phase aberration correction (PAC) methods can reduce these detrimental effects, most practical implementations of PAC methods are based on the near field phase screen model, which have limited ability to represent the true aberration induced by inhomogeneous tissue. Accordingly, we propose a locally adaptive phase aberration correction (LAPAC) method that is applied through the use of synthetic aperture. The method is tested using full-wave simulations of models of human abdominal wall, experiments with tissue aberrators, and in vivo carotid images. LAPAC is compared with conventional phase aberration correction (cPAC) where aberration profiles are computed at a preselected depth and applied to the beamformer's time delays. For all experiments, LAPAC shows an average of 1 to 2 dB higher contrast than cPAC, and enhancements of 3 to 7 dB with respect to the uncorrected cases. We conclude that LAPAC may be a viable option to enhance ultrasound image quality images even in the presence of clinically relevant aberrating conditions.


Assuntos
Parede Abdominal/anatomia & histologia , Artérias Carótidas/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Adulto , Algoritmos , Simulação por Computador , Humanos , Masculino , Valores de Referência , Adulto Jovem
6.
J Acoust Soc Am ; 144(1): 254, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30075660

RESUMO

A model and method to accurately estimate the local speed of sound in tissue from pulse-echo ultrasound data is presented. The model relates the local speeds of sound along a wave propagation path to the average speed of sound over the path, and allows one to avoid bias in the sound-speed estimates that can result from overlying layers of subcutaneous fat and muscle tissue. Herein, the average speed of sound using the approach by Anderson and Trahey is measured, and then the authors solve the proposed model for the local sound-speed via gradient descent. The sound-speed estimator was tested in a series of simulation and ex vivo phantom experiments using two-layer media as a simple model of abdominal tissue. The bias of the local sound-speed estimates from the bottom layers is less than 6.2 m/s, while the bias of the matched Anderson's estimates is as high as 66 m/s. The local speed-of-sound estimates have higher standard deviation than the Anderson's estimates. When the mean local estimate is computed over a 5-by-5 mm region of interest, its standard deviation is reduced to less than 7 m/s.


Assuntos
Simulação por Computador , Interpretação de Imagem Assistida por Computador , Som , Ultrassonografia , Algoritmos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ondas Ultrassônicas , Ultrassonografia/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-28328504

RESUMO

During a transcostal ultrasound scan, ribs and other highly attenuating and/or reflective tissue structures can block parts of the array. Blocked elements tend to limit the acoustic window and impede visualization of structures of interest. Here, we demonstrate a method to detect blocked elements and we measure the loss of image quality they introduce in simulation and in vivo. We utilize a fullwave simulation tool and a clinical ultrasound scanner to obtain element signals from fully sampled matrix arrays during simulated and in vivo transcostal liver scans, respectively. The elements that were blocked by a rib showed lower average signal amplitude and lower average nearest-neighbor cross correlation than the elements in the remainder of the 2-D aperture. The growing receive-aperture B-mode images created from the element data indicate that the signals on blocked elements are dominated by noise and that turning them OFF has a potential to improve visibility of liver vasculature. Adding blocked elements to the growing receive apertures for five in vivo transcostal acquisitions resulted in average decrease in vessel contrast and contrast to noise ratio of 19% and 10%, respectively.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Costelas/diagnóstico por imagem , Tórax/diagnóstico por imagem
8.
Artigo em Inglês | MEDLINE | ID: mdl-28328505

RESUMO

In Part I of this paper, we detected elements blocked by ribs during simulated and in vivo transcostal liver scans, and we turned those elements OFF to compensate for the loss in visibility of liver vasculature. Here, we apply blocked-element detection and adaptive compensation to large synthetic-aperture (SA) data collected through rib samples ex vivo, in order to reduce near-field clutter and to recover lateral resolution. To construct large synthetic transmit and receive apertures, we collected the individual-channel signals from a fully sampled matrix array at multiple and known array locations across the tissue samples. The blocked elements in SAs were detected using the method presented in Part I and retroactively turned OFF, while the subapertures covering intercostal spaces were either compounded, or coherently summed using uniform and adaptive element-weighting schemes. Turning OFF the blocked elements reduced the reverberation clutter by 5 dB on average. Adaptive weighing of the nonblocked elements to rescale the attenuated spatial frequencies reduced sidelobe levels by up to 5 dB for the transcostal acquisitions, and demonstrated a potential to restore lateral resolution to the nonblocked levels. In addition, the arrival-time surfaces were reconstructed to estimate the aberration from intercostal spaces and to offer further means to compensate for the loss of focus quality in transthoracic imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Cães , Humanos , Imagens de Fantasmas , Costelas/diagnóstico por imagem , Ultrassonografia/métodos
9.
IEEE Trans Med Imaging ; 35(7): 1676-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26863653

RESUMO

Ultrasound image quality is often inherently limited by the physical dimensions of the imaging transducer. We hypothesize that, by collecting synthetic aperture data sets over a range of aperture positions while precisely tracking the position and orientation of the transducer, we can synthesize large effective apertures to produce images with improved resolution and target detectability. We analyze the two largest limiting factors for coherent signal summation: aberration and mechanical uncertainty. Using an excised canine abdominal wall as a model phase screen, we experimentally observed an effective arrival time error ranging from 18.3 ns to 58 ns (root-mean-square error) across the swept positions. Through this clutter-generating tissue, we observed a 72.9% improvement in resolution with only a 3.75 dB increase in side lobe amplitude compared to the control case. We present a simulation model to study the effect of calibration and mechanical jitter errors on the synthesized point spread function. The relative effects of these errors in each imaging dimension are explored, showing the importance of orientation relative to the point spread function. We present a prototype device for performing swept synthetic aperture imaging using a conventional 1-D array transducer and ultrasound research scanner. Point target reconstruction error for a 44.2 degree sweep shows a reconstruction precision of 82.8 µm and 17.8 µm in the lateral and axial dimensions respectively, within the acceptable performance bounds of the simulation model. Improvements in resolution, contrast and contrast-to-noise ratio are demonstrated in vivo and in a fetal phantom.


Assuntos
Ultrassonografia , Animais , Cães , Imagens de Fantasmas , Transdutores
10.
Artigo em Inglês | MEDLINE | ID: mdl-24960700

RESUMO

Short-lag spatial coherence (SLSC) imaging is a beamforming technique that has demonstrated improved imaging performance compared with conventional B-mode imaging in previous studies. Thus far, the use of 1-D arrays has limited coherence measurements and SLSC imaging to a single dimension. Here, the SLSC algorithm is extended for use on 2-D matrix array transducers and applied in a simulation study examining imaging performance as a function of subaperture configuration and of incoherent channel noise. SLSC images generated with a 2-D array yielded superior contrast-to-noise ratio (CNR) and texture SNR measurements over SLSC images made on a corresponding 1-D array and over B-mode imaging. SLSC images generated with square subapertures were found to be superior to SLSC images generated with subapertures of equal surface area that spanned the whole array in one dimension. Subaperture beamforming was found to have little effect on SLSC imaging performance for subapertures up to 8 x 8 elements in size on a 64 × 64 element transducer. Additionally, the use of 8 x 8, 4 x 4, and 2 x 2 element subapertures provided 8, 4, and 2 times improvement in channel SNR along with 2640-, 328-, and 25-fold reduction in computation time, respectively. These results indicate that volumetric SLSC imaging is readily applicable to existing 2-D arrays that employ subaperture beamforming.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/métodos , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos , Modelos Teóricos
11.
Artigo em Inglês | MEDLINE | ID: mdl-24960701

RESUMO

In Part I of the paper, we demonstrated through simulation the potential of volumetric short-lag spatial coherence (SLSC) imaging to improve visualization of hypoechoic targets in three dimensions. Here, we demonstrate the application of volumetric SLSC imaging in phantom and in vivo experiments using a clinical 3-D ultrasound scanner and matrix array. Using a custom single-channel acquisition tool, we collected partially beamformed channel data from the fully sampled matrix array at high speeds and created matched Bmode and SLSC volumes of a vessel phantom and in vivo liver vasculature. 2-D and 3-D images rendered from the SLSC volumes display reduced clutter and improved visibility of the vessels when compared with their B-mode counterparts. We use concurrently acquired color Doppler volumes to confirm the presence of the vessels of interest and to define the regions inside the vessels used in contrast and contrast-to-noise ratio (CNR) calculations. SLSC volumes show higher CNR values than their matched B-mode volumes, while the contrast values appear to be similar between the two imaging methods.


Assuntos
Artéria Hepática/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/métodos , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Adulto , Algoritmos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos , Pessoa de Meia-Idade , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-24569248

RESUMO

In vivo ultrasonic imaging with transducer arrays suffers from image degradation resulting from beamforming limitations, including diffraction-limited beamforming and beamforming degradation caused by tissue inhomogeneity. Additionally, based on recent studies, multipath scattering also causes significant image degradation. To reduce degradation from both sources, we propose a model-based signal decomposition scheme. The proposed algorithm identifies spatial frequency signatures to decompose received wavefronts into their most significant scattering sources. Scattering sources originating from a region of interest are used to reconstruct decluttered wavefronts, which are beamformed into decluttered RF scan lines or A-lines. To test the algorithm, ultrasound system channel data were acquired during liver scans from 8 patients. Multiple data sets were acquired from each patient, with 55 total data sets, 43 of which had identifiable hypoechoic regions on normal B-mode images. The data sets with identifiable hypoechoic regions were analyzed. The results show the decluttered B-mode images have an average improvement in contrast over normal images of 7.3 ± 4.6 dB. The contrast-to-noise ratio (CNR) changed little on average between normal and decluttered Bmode, -0.4 ± 5.9 dB. The in vivo speckle SNR decreased; the change was -0.65 ± 0.28. Phantom speckle SNR also decreased, but only by -0.40 ± 0.03.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Teóricos , Ultrassonografia/métodos , Simulação por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Ultrasound Med Biol ; 39(3): 534-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23347642

RESUMO

We present the results of a patient study conducted to assess the performance of two novel imaging methods, namely short-lag spatial coherence (SLSC) and harmonic spatial coherence imaging (HSCI), in an in vivo liver environment. Similar in appearance to the B-mode images, SLSC and HSCI images are based solely on the spatial coherence of fundamental and harmonic echo data, respectively, and do not depend on the echo magnitude. SLSC and HSCI suppress incoherent echo signals and thus tend to reduce clutter. The SLSC and HSCI images of 17 patients demonstrated sharper delineation of blood vessel walls, suppressed clutter inside the vessel lumen, and showed reduced speckle in surrounding tissue compared to matched B-modes. Target contrast and contrast-to-noise ratio (CNR) show statistically significant improvements between fundamental B-mode and SLSC imaging and between harmonic B-mode and HSCI imaging (in all cases p < 0.001). The magnitude of improvement in contrast and CNR increases as the overall quality of B-mode images decreases. Poor-quality fundamental B-mode images (where image quality classification is based on both contrast and CNR) exhibit the highest improvements in both contrast and CNR (288% improvement in contrast and 533% improvement in CNR).


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Humanos , Aumento da Imagem/métodos , Projetos Piloto , Razão Sinal-Ruído , Ultrassonografia
14.
Artigo em Inglês | MEDLINE | ID: mdl-22547276

RESUMO

We introduce a harmonic version of the short-lag spatial coherence (SLSC) imaging technique, called harmonic spatial coherence imaging (HSCI). The method is based on the coherence of the second-harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also obtained with HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however secondharmonic echoes are not necessarily immune to the effects of clutter. HSCI and SLSC imaging are less sensitive to clutter because clutter has low spatial coherence. HSCI shows favorable imaging characteristics such as improved contrast-to-noise ratio (CNR), improved speckle SNR, and better delineation of borders and other structures compared with fundamental and harmonic B-mode imaging. CNRs of up to 1.9 were obtained from in vivo imaging of human cardiac tissue with HSCI, compared with 0.6, 0.9, and 1.5 in fundamental B-mode, harmonic B-mode, and SLSC imaging, respectively. In vivo experiments in human liver tissue demonstrated SNRs of up to 3.4 for HSCI compared with 1.9 for harmonic B-mode. Nonlinear simulations of a heart chamber model were consistent with the in vivo experiments.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Ecocardiografia/métodos , Humanos , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Dinâmica não Linear , Espalhamento de Radiação , Razão Sinal-Ruído
15.
Opt Express ; 17(4): 2780-96, 2009 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19219183

RESUMO

We report the development and evaluation of a simple compact probe that incorporates multiple beveled fibers for depth sensitive detection of spectroscopic signals in vivo. We evaluated three probes with bevel angles 35, 40, and 45 degrees for their collection efficiency and depth resolution using a thin highly scattering white substrate and found that a 40 degree bevel provides the best characteristics for depth-resolved spectroscopy. The depth sensitivity of the probe with 40 degree beveled fibers was then evaluated using multilayer phantoms with scattering properties mimicking precancerous tissue and in vivo on normal human oral mucosa. The results demonstrate that the use of multiple beveled fibers has the capability to simultaneously collect scattering spectra from a range of depths within epithelial tissue that has the potential to provide further significant improvement of detection and monitorin of epithelial precancers.


Assuntos
Biomarcadores Tumorais/análise , Epitélio/química , Neoplasias Bucais/química , Neoplasias Bucais/diagnóstico , Análise Espectral/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Miniaturização , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...